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Fig. 1 Flow through hourglass exhibiting clustering (exposure
time 1/1000 s).

general, the conditions under which one may expect
deviations from a white spectrum and from this obtain
important additional insights into possible source mechanisms.

In order to demonstrate these ideas, let us7, following
Heiden8, view a noise sequence as a sequence of unitary events
(pulses) which may represent current, voltage, magnetic lines,
and so on. Each individual pulse has its own time constant,
τ, amplitude,  h, and shape y(τ, i).  In addition, characterising

Fig. 2 Power spectra associated with particle flow through
hourglass (curve A) and through a narrow pore out of an
open compartment (curve B). Line between curves indicates
slope of (ideal) 1/f noise.

each pulse is the interval φ between its beginning and the
beginning of the next pulse. The simplified sequence can
be drawn as in Fig. 3.

The interval distribution function µ(φ) may be Poisson
or non-Poisson. The sequence can be written as

I (t) = h1y(t,τ1) + h2y(t – φ1,τ2)
+ h3y(t–φ1–φ2, τ3) + . . .

For those sequences in which φ, τ, and h are
functionally independent of one another, the power
spectrum is7



where < > indicates average value, N is the mean number of
pulses per unit time, F(f,τ) is the Fourier transform of the
individual pulse form y(t,τ), and

ψ =      µ(φ) exp(2πifφ)dφ.

For   convenience,   we   can   write    S(f)   =   NA(f)P(f)    where 

A(f) = <h2> <│F(f, τ)│>2 and P(f) is the expression in the
brackets.

For  Poisson  distributions,  µ(φ) = Nexp(–Nφ)  and  Re
(ψ/(1–ψ)) is zero. In these cases, then, the form of the power
spectrum is determined by F(f ,τ) and the distribution of pulse
time constants, v(τ).

In general,

F(f ,τ) =     y  (t,τ) exp (–2π i f t) dt.

At low frequencies (2π f τ << 1), however,

F(f ,τ) =          y(t,τ)dt.

Hence the Fourier transform is frequency independent and
the low frequency portion of the spectrum is white9.

If there is a distribution of time constants, ν(τ), among the
pulses, then, physically, there exists a maximum τ, τm, such that
ν(τ) is small for τ > τm. Now

<F(f ,τ)> ≈            F(f, τ) ν(τ)dt,

so at frequencies (2πfτm<< 1), <F(f,τ)> is also frequency
independent and represents a white spectrum. This is also true
for <│F(f,τ)│>. Hence, for a sequence of pulses with a
distribution of time constants, A(f) is white at low enough
frequencies so long as there is no coupling among the parameters
of a single pulse.

A similar conclusion obtains for the factor P(f) which
incorporates the effect on the power spectrum of deviations from
a Poisson sequence.

Fig. 3 Pulse sequence parameters.

We have

ψ =         µ(φ)exp(2π i f φ) dφ.

Physically there exists a maximum φ, say φm, beyond
which µ(φ) is arbitrarily small. Hence, for low enough
frequencies, (2πfφm<< 1), ψ is frequency independent and,
therefore, so is Re (ψ/(1–ψ)).

We therefore have a theorem which says that the power
spectrum of any pulse sequence, Poisson or non-Poisson,
even with a distribution of pulse time constants, is white at
low enough frequencies provided that there is no coupling
among the parameters of a single pulse.

There are at least two immediate and useful
consequences. First, if there is not too much overlap
between pulses, simple visual inspection of the sequence
will permit estimates of τm and φm. This in turn allows an
approximate determination of the low frequency
bandwidths over which A(f) and P(f) respectively are
white. Hence, under these conditions, visual inspection can
tell us whether deviations from a white spectrum are due to
A(f) or P(f) over a particular bandwidth. This is
particularly easy to do in those cases where φm > τm.

Secondly, if one should find that at low frequencies (2πf
<< the smaller of τm

–1 or (φm
–1) the spectrum is not white,

then the implication is that coupling must exist among the

parameters of a single pulse.
The first consequence permits direct comparison between

the experimentally determined form of the power spectrum
and the theoretical frequency range over which A(f) and
P(f) should be white. Since one now knows over what
bandwidth the form of the spectrum is due to the shape of
the individual pulses, we have a direct way of determining
if the sequence is non-Poisson (via P(f)). The second
allows one to deduce that functional relations (for example,
(φ = (constant)τ or h = constant/φ) exist between the pulse
parameters. We note for example that (φ = (constant)τ is a
kind of inhibition where the presence of a pulse with a long
time constant tends to delay the appearance of a next pulse
while h = constant/φ is a kind of facilitation where a large
pulse tends to encourage the appearance of the subsequent
pulse. Detailed analysis of the low frequency deviations
from a white spectrum will make it possible, in some cases,
to select the precise form of the pulse coupling and thereby
give further insight into the physical origins of the noise.

If the hourglass flow is examined at different angles with
respect to the vertical, the formation of unstable vaults can
easily be seen. Clearly, the formation of unstable vaults of
different lifetimes generates the clustering effects (Fig. 1)
in the flow. In an extensive study (published in Dutch)
Peschl4 investigated the flow of particles from bin
openings. A key parameter is the ratio of the opening to the
grain diameter. In an hourglass the ratio threshold, 4, is
exceeded.

Only unstable vaults occur in normal use and their lifetimes
have an upper limit. Hence, the distribution of the intervals
between successive particles flowing through a plane must have
an upper time limit. In the case of the flow of steel grit through a
pore, in our experiments, for example, no intervals longer than
200 ms were found during a period of 10 min with a mean flow
of 1,250 grains s–1 through the laser beam (0.2 mm diameter).
Generally, the individual pulse time constants were considerably
less than 20 ms. According to the theorem developed earlier in
the paper, the low frequency spectrum should be white for
frequencies below about 1/0.2 = 5 Hz as has been found (Fig. 2).
The 1/f portion of the spectrum is due to the non-Poisson
character (clustering) of the individual particles. At higher
frequencies a change from 1/f to some other spectrum is pre-
dicted due to pulse shape, time constant and photocell response.
This occurs, as expected, at frequencies >> 100 Hz.

It is tempting to conjecture that in some systems of molecular
dimensions with barriers, particles and pores analogous situa-
tions might prevail. Molecular size vaults might be formed and
thermal motion functions as the agent for the introduction of the
instabilities. These systems would exhibit power spectra with
strong low frequency contributions (perhaps 1/f in form) but, yet,
at the very lowest frequencies their spectra would always turn
white.
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